**1**-
I. Daubechies.
*Ten Lectures on Wavelets*. Number 61 in CBMS-NSF Series in Applied Mathematics. SIAM Publications, Philadelphia, 1992. **2**-
C. E. Heil and D. F. Walnut.
Continuous and discrete wavelet transforms.
*SIAM Review*, 31(4):628-666, 1989. **3**-
S. G. Mallat.
A theory for multiresolution signal decomposition: The wavelet
representation.
*IEEE Trans. on Patt. Anal. and Mach. Intell.*, 11(7):674-693, 1989. **4**-
I. Daubechies.
The wavelet transform, time-frequency localization and signal
analysis.
*IEEE Trans. on Inf. Theory*, 36(5):961-1005, 1990. **5**-
G. Strang.
Wavelets and dilation equations: A brief introduction.
*SIAM Review*, 31(4):614-627, 1989. **6**-
Olivier Rioul and Patrick Flandrin.
Time-scale energy distributions: A general class extending wavelet
transforms.
*IEEE Trans. on Signal Processing*, 40(7):1746-1757, July 1992. **7**-
D. Gabor.
Theory of communication.
*J. Inst. Elec. Eng.*, Vol.93(Part III):429-457, 1946. **8**-
William Siebert.
A radar detection philosophy.
IT-2(3), September 1956.
**9**-
William Siebert.
Statistical theories of radar synthesis.
October 1956.
**10**-
William Siebert.
Woodward's uncertainty function.
April 15, 1958.
**11**-
Merrill I. Skolnik.
*Introduction to Radar Systems, Second Edition*. McGraw-Hill, second edition, 1980. **12**-
G.B. Folland.
*Harmonic Analysis in Phase Space*. Princeton University Press, Princeton, NJ, 1989. **13**-
A. Grossmann and T. Paul.
Wave functions on subgroups of the group of affine cannonical
tranformations.
Lecture notes in physics, No. 211: Resonances -- Models and
Phenomena, pages 128-138. Springer-Verlag, 1984.
**14**-
A. Papoulis.
*Signal Analysis*. McGraw-Hill, 1977. **15**-
D.L. Jones and T.W. Parks.
Time-frequency window leakage in the short-time fourier transform.
*Circuits, Systems, and Signal Processing*, 6(3), 1987. **16**-
H.H. Szu and J.A. Blodgett.
On the Locus and Spread of Pseudo-Density Functions in the
Time-Frequency Plane.
*Philips J. Res.*, 37:79-110, 1982. **17**-
A. Janssen.
On the Locus and Spread of Pseudo-Density Functions in the
Time-Frequency Plane.
*Philips J. Res.*, 37:79-110, 1982. **18**-
A. Berthon.
Operator Groups and Ambiguity Functions in Signal
Processing.
In J.M. Combes, editor,
*Wavelets: Time-Frequency Methods and Phase Space*. Springer Verlag, 1989. **19**-
S. Haykin, B. W. Currie, and V. Kezys.
Surface-based radar: coherent.
In S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, editors,
*Remote Sensing of Sea Ice and Icebergs*, pages 443-504. John Wiley and Sons, 1994. **20**-
D. Slepian and H.O. Pollak.
Prolate spheroidal wave functions,Fourier analysis and
uncertainty, I.
*Bell System Technical Journal*, 40:43-64, January 1961. **21**-
H.J. Landau and H.O. Pollak.
Prolate spheroidal wave functions,Fourier analysis and
uncertainty, II.
*Bell System Technical Journal*, 40:65-84, January 1961. **22**-
D. Slepian and H.O. Pollak.
Prolate spheroidal wave functions,Fourier analysis and
uncertainty, III: The dimension of essentially time-and band-limited
signals.
*Bell System Technical Journal*, 41:1295-1336, July 1962. **23**-
D. Slepian.
Prolate spheroidal wave functions,Fourier analysis and
uncertainty, IV:Extensions to many dimensions;generalized prolate
spheroidal functions.
*Bell System Technical Journal*, 43:3009-3058, November 1964. **24**-
D. Slepian.
Prolate spheroidal wave functions,Fourier analysis and
uncertainty, V:The discrete case.
*Bell System Technical Journal*, 57:1371-1430, may-jun 1978. **25**-
D. Slepian.
On bandwidth.
*Proc. IEEE*, 64:292-300, March 1976. **26**-
Steve Mann and Simon Haykin.
The chirplet transform -- a generalization of Gabor's logon
transform.
*Vision Interface '91*, June 3-7 1991. **27**-
D Mihovilovic and R.N. Bracewell.
Adaptive chirplet representation of signals on time-frequency plane.
*Electronics Letters*, 27(13):1159-1161, June 20, 1991. **28**-
D Mihovilovic and R.N. Bracewell.
Whistler analysis in the time-frequency plane using chirplets.
*Journal of Geophysical Research*, 97(A11):17199-17204, November, 1992. **29**-
B. Torresani.
Wavelets associated with representations on the affine
Weyl-Heisenberg group.
*J. Math. Phys.*, 32(5):1273-1279, May 1991. **30**-
J. Segman and W. Schempp.
*Two methods of incorporating scale in the Heisenberg group*. 1993. JMIV special issue on wavelets. **31**-
R Wilson, A D Calway, and E R S Pearson.
A generalised wavelet transform for Fourier analysis: the
multiresolution Fourier transform and its application to image and audio
signal analysis.
*IEEE Trans. on Information Theory*, 38(2):674-690, March 1992. ftp://ftp.dcs.warwick.ac.uk/reports/isp-IT38. **32**-
R. Wilson, A. D. Calway, E. R. S. Pearson, and A. R. Davies.
An introduction to the multiresolution Fourier transform.
Technical report, Department of Computer Science, University of
Warwick, Coventry CV4 7AL UK., 1992.
ftp://ftp.dcs.warwick.ac.uk/reports/rr-204/.
**33**-
R. G. Baraniuk.
*Shear madness: Signal-dependent and metaplectic time-frequency representations*. PhD dissertation, University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, August 1992. **34**-
Richard Baraniuk and Doug Jones.
Shear madness: New orthonormal bases and frames using chirp
functions.
*Trans. Signal Processing, vol. 41*, December 1993. Special Issue on Wavelets in Signal Processing. **35**-
D. Mendlovic H. Ozaktas, B. Barshan and L. Onural.
Convolution, filtering, and multiplexing in fractional fourier
domains and their relation to chirp and wavelet transforms.
*JOSA A*. to appear. **36**-
Steve Mann and Simon Haykin.
Time-frequency perspectives: The chirplet transform.
In
*Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, San Francisco, CA, March 23-26, 1992. IEEE. **37**-
Steve Mann and Shawn Becker.
Computation of some projective chirplet transform (PCT) and
metaplectic chirplet transform (MCT) subspaces, with applications in signal
processing.
*DSP World*, November 1992. **38**-
Steve Mann and Simon Haykin.
The Adaptive Chirplet: An Adaptive Wavelet Like Transform.
*SPIE, 36th Annual International Symposium on Optical and Optoelectronic Applied Science and Engineering*, 21-26 July 1991. **39**-
Steve Mann and Simon Haykin.
Chirplets and Warblets: Novel Time-Frequency Representations.
*Electronics Letters*, 28(2), January 1992. **40**-
S. Mann.
Wavelets and chirplets: Time-frequency perspectives, with
applications.
In Petriu Archibald, editor,
*Advances in Machine Vision, Strategies and Applications*. World Scientific, Singapore . New Jersey . London . Hong Kong, world scientific series in computer science - vol. 32 edition, 1992. **41**-
R.G. Baraniuk and D.L. Jones.
New dimensions in wavelet analysis.
In
*Proceedings of the International Conference on Acoustics, Speech and Signal Processing*, San Francisco, CA, March 23-26, 1992. IEEE. **42**-
J. Cunningham and S. Haykin.
Neural network detection of small moving radar targets in an ocean
environment.
*Workshop on Neural Networks for Signal Processing*, September 1992. **43**-
Foley vanDam Feiner Hughes.
*Computer Graphics, PRINCIPLES AND PRACTICE*. THE SYSTEMS PROGRAMMING SERIES. Addison-Wesley, second edition, 1990. **44**-
I.E. Segal.
Foundations of the theory of dynamical systems of infinitely many
degrees of freedom.
*Matematisk-fysiske Meddelelser*, 31(12):1-39, 1959. **45**-
Victor Guillemin and Shlomo Sternberg.
*Symplectic techniques in physics*. Cambridge University Press, 1984. MIT course text book. **46**-
M. Artin.
*Algebra*. Prentice Hall, 1991. **47**-
I. E. Segal.
Foundations of the theory of dynamical systems of infinitely many
degrees of freedom.
*Matematisk-fysiske Meddelelser*, 31(12):1-39, 1959. **48**-
Ram G. Shenoy and Thomas W. Parks.
The Weyl correspondence and time-frequency analysis.
*IEEE Trans. Sig. Proc.*, 42(2):318-331, February 1994. **49**-
D.J. Thomson.
Spectrum estimation and harmonic analysis.
*Proc. IEEE*, 70(9):1055-1096, September 1982. **50**-
Alan V. Oppenheim and Ronald W. Schafer.
*Discrete-Time Signal Processing*. Prentice Hall, 1989. **51**-
David Slepian.
Some comments on Fourier analysis,uncertainty and modelling.
*SIAM Review*, 25(3):379-393, July 1983. **52**-
Peter J. Burt and Edward Adelson.
The Laplacian pyramid as a compact image code.
*IEEE Transactions on Communications*, 31:532-540, April 1983. **53**-
Leon Cohen.
Time-frequency distributions -- a review.
*Proceedings of the IEEE*, 77(7):941-981, 1989. **54**-
L. Cohen.
*Time-Frequency Analysis*. Prentice-Hall, 1995. **55**-
Jayakumar Ramanathan and Pankaj Topiwala.
Time-frequency localization via the Weyl correspondence.
Technical Report MTP-92B0000003, MITRE, Bedford, Massachusetts,
September 1992.
**56**-
P. M. Woodward.
*Probability and Information Theory with Applications to Radar*. McGraw-Hill, 1953. **57**-
J. Bertrand and P. Bertrand.
Affine time-frequency distributions.
*To appear in Time-Frequency Analysis - Methods and Applications, B. Boashash (ed.)*. **58**-
J Illingworth and J Kittler.
A survey or the Hough Transform .
*Computer Vision, Graphics, and Image Processing*, August 10 1987. **59**-
W. J. Pierson and L. A. Moskowitz.
A proposed spectral form for fully developed wind seas based on the
similarity theory of S. A. Kitaigorodskii.
*Journal of Geophysical Research*, 69(24):5181-5203, 1964. **60**-
Steve Mann and Simon Haykin.
Adaptive ``Chirplet'' Transform: an adaptive generalization of the
wavelet transform.
*Optical Engineering*, 31(6):1243-1256, June 1992. **61**-
R. G. Baraniuk and D. L. Jones.
A signal dependent time-frequency representation: Optimal kernel
design.
*IEEE transactions on signal processing*, 41(4):1589-1602, April 1993. **62**-
R. G. Baraniuk and D. L. Jones.
Signal-dependent time-frequency analysis using a radially gaussian
kernel.
*signal processing*, 32(3):263-284, June 1993.

Thu Jan 8 19:50:27 EST 1998