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Abstract. The “chirplet” transform unifies many of the disparate signal
representation methods. In particular, the wide range of time-frequency
(TF) methods such as the Fourier transform, spectrogram, Wigner distri-
bution, ambiguity function, wideband ambiguity function, and wavelet
transform may each be shown to be a special case of the chirplet
transform. The above-mentioned TF methods as well as manynew ones
may be derived by selecting appropriate 2-D manifolds from within the
8-D “chirplet space” (with appropriate smoothing kernel). Furthermore,
the chirplet transform is a framework for deriving new signal represen-
tations. The chirplet transform is a mapping from a 1-D domain to an 8-D
range (in contrast to the wavelet, for example, which is a 1-D to 2-D
mapping). Display of the 8-D space is at best difficult. (Aithough it may
be displayed by moving a mesh around in a 3-D virtual world, the whole
space cannot be statically displayed in its entirety.) Computation of the
8-D range is also difficult. The adaptive chirplet transform attempts to
alleviate some of these problems by selecting an optimal set of bases
without the need to manually intervene. The adaptive chirplet, based on
expectation maximization, may also form the basis for a classifier (such
as a radial basis function neural network) in TF space.

Subject terms: adaptive signal processing; chirplet; wavelet; expectation max-

imization; neural networks.
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1 Introduction

The “‘chirplet transform,” first proposed in Ref. 1, is an
extension of the well-known wavelet transform.? Informally
speaking, a chirplet may be regarded as a ‘‘piece of a chirp”’
(windowed swept-frequency wave) in the same manner a
wavelet could be loosely regarded as a ‘‘piece of a wave’’
(windowed tone).

The wavelet transform consists of an expansion of an
arbitrary signal onto a set of bases that is affine in the
physical (e.g., time) domain. Thus, for the purpose of our
discussion, we will refer to the wavelet transform bases as
the ‘‘physical affinities.”” A particular mother wavelet is
chosen and the other physical affinities are derived through
affine coordinate transformations in the physical domain.
(In 1-D there are two free parameters: translation and di-
lation.)

Time-frequency (TF)—-affine chirplets extend the wavelet
idea by requiring only that the basis functions be derivable
through affine transformations in the TF domain rather than
being limited to the physical (time) domain as is the case
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with the wavelet transform. Since physical affinities are a
subset of the TF affinities, the chirplet transform embodies
the wavelet transform as a special case. Furthermore, the
short-time Fourier transform (STFT) turns out to be another
special case of the chirplet transform.

A second generalization of the wavelet transform, known
as the “‘perspectives’’> (or the projective chirplet) is based
on a camera metaphor. The 1-D wavelet family may be
regarded as a series of 1-D pictures of the mother wavelet
with two free parameters: camera shift and camera zoom.
Zoom corresponds to dilation and shift to translation. The
extension from the wavelet to the projective chirplet is sim-
ple: Perspectives are produced by allowing the make-believe
camera to tilt, so that the mother wavelet (generating func-
tion) and the film plane (other member of the family) are
no longer parallel. Thus, including this second wavelet gen-
eralization, the 1-D chirplet family embodies eight free pa-
rameters: six TF-affine parameters,® and two additional
nonaffine (perspective) parameters.

The high number of parameters sometimes becomes a
bottleneck. Therefore, an adaptive algorithm that overcomes
this limitation was formulated and is presented here. A

“To maintain a unitary, linear time-frequency expansion, one is free to
limit oneself to a five-parameter area-preserving-TF-affine space. To do
otherwise requires the use of nonlinear methods based on multiple prim-
itives. Two such methods, however, have already been discovered,” thus,
for the sake of completeness, we will include all six parameters in our
discussion, where the reader is free to strip away the TF-area parameter
if linearity is desired.
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further advantage of the adaptive chirplet is its utility as a
classifier in pattern recognition tasks.

Chirplets have been successfully applied to many prac-
tical applications such as radar imaging, machine vision,
and characterizing the acceleration signature of objects' us-
ing Doppler. Chirplets have also been applied to more ar-
tistic endeavors,* such as computer-enhanced *‘light paint-
ing”’ (camera parameter estimation with respect to composites
of multiple exposures). In this paper, only the 1-D chirplet
is presented. The extension to two or more dimensions is
not particularly difficult.

The adaptive chirplet may be regarded as a new distance
metric for a radial basis function (RBF) neural network. A
rule for positioning the centers® in TF space, which is based
on the well-known expectation maximization (EM) algo-
rithm, is also presented. The algorithm, for which we have
coined the term ‘‘logon expectation maximization’> (LEM)
adapts a number of centers in the TF space in such a way
that it fits the input distribution. Two variants of LEM are
presented: LEM1, which works on the marginals of the TF
distribution sequentially, and LEM2, which works in the
TF domain. Thus a connection between the adaptive chirplet
EM and the RBF neural network is established.

Time-frequency contours, (approximately) circular in
shape, in the TF space are allowed to dilate into ellipses of
arbitrary aspect ratio to embody both the STFT and physically
affine (wavelet) spaces as special cases.

The ellipses may also adaptively “‘tilt,”” if desired. (In
other words the time series associated with each center may
chirp.)

An alternative chirplet space, the ‘‘bowtie’” space,’ is
also presented in the context of LEM. In that space, the
adaptivity appears as a number of bashaped centers, which
also move about to fit the input distribution.

1

2 Review of the Nonadaptive Chirplet

Before discussing the adaptive chirplet, we provide here a
brief outline of the nonadaptive chirplet, following Ref. 6.

The well-known wavelet transform was derived through
1-D affine transformations in the physical (e.g., time) do-
main. A basic primitive known as a mother wavelet is cho-
sen and all other basis functions are derived from it by affine
transformations in the physical domain. In one dimension,
the wavelet family is given by Wap(#) =Us(at+b). These
‘‘physical affinities’’ have two free parameters, a and b.

The proposed chirplet bases, however, are derived through
a number of additional transformations in the TF (e.g.,
Wigner) plane. The transformations are actually applied in
either the physical (time) or the Fourier (frequency) domain,
but are interesting because of the intuitive significance each
of the transformations has in the TF domain. We may char-
acterize the chirplet by two equations, one designating the
transformations in the physical domain:

Ywpg =w(Y[p(1)] explq(?)] ¢))

®The term center, in italics, is used loosely, as is common practice in the
EM literature, to designate all of the parameters (including both mean
and variance) of a particular basis function.
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the other indicating the transformations in the Fourier do-
main:

Ywro=W(f)¥[P(f)] explQ(f)] ©))

where w is the window function, p is the resampling func-
tion, and g (if pure imaginary) is the modulation function.
In particular, we generally set p(¢) = (at+ b)/(ct+ 1) where
a is the dilation, b is the translation, and c is the ““chirpi-
ness’’ due to perspective. (In terms of our hypothetical
camera metaphor, a is like zoom, b is like moving the
camera left or right, and ¢ is like panning or tilting the
camera.) Thus, the parameter p(¢) alone gives a 3-D (time-
scale-perspective) transform space, as opposed to the con-
ventional 2-D (time-scale) wavelet transform.

We generally set the functions ¢ and Q to be quadratics
with complex coefficients (2> + B,z + v¥:). The imaginary
part of o, for example, denotes the ““‘chirpiness’’ in a linear
FM sense (shear in frequency). Equations 1 and 2 contain
some redundant parameters. We may, however, identify 8
independent parameters that each have an intuitively sat-
isfying significance. Depending on the choice of mother
chirplet, the number of free parameters may be reduced.
For example, the Gaussian chirplet may be shown to have
only four useful degrees of freedom: temporal center, fre-
quency center, time-bandwidth aspect ratio, and TF-tilt
(chirpiness).

Furthermore, depending on the particular application, the
number of free parameters may also be reduced (by ex-
amining the physics of the problem). For example, the TF-
area-preserving (unitary, linear) constraint may be imposed,
leading to a maximum of seven parameters. The perspec-
tives may be eliminated if there is reason to believe pro-
Jective geometry is not relevant to the problem at hand (e.g.,
in Doppler radar). If, on the other hand, the physics of the
problem specifically dictate projective geometry (e.g., in
vision applications), then we would naturally choose to use
at least the physical perspectives.

The chirplet transform thus has indexdimension® up to
eight (depending on the particular mother chirplet and the
problem at hand). Chirplet theory allows for a unified frame-
work because it embodies many other TF methods as lower
dimensional manifolds in chirplet space. For example, both
the wavelet transform and the STFT are planar chirplet
slices, while many adaptive methods are two-
indexdimensional manifolds in the chirplet transform space.

2.1 ‘“Le Peépielette’’/"'The Chirplet”

Yves Meyer first coined the term ondelette (from the French
word for wave, ‘‘onde,” and the diminutive ‘‘ette’’). The
closest English translation, wavelet, became the accepted
word within papers written in the English language.

We have coined the term ‘‘pépielette’” (combining the
diminutive with the French word “pépier’’ or *‘pépiement’’)
to designate similarly a ‘‘piece of a chirp.”” Similarly, in
English, we coin the term ‘‘chirplet.”” Figure 1 shows that
the relationship of a chirplet to a chirp is analogous to that
of a wavelet to a wave.

“Indexdimension refers to the number of indices that a discrete sampling
of the space would have, if it were stored in an array. Indexdimension is
analogous to tensor rank. Vectordimension, however, refers to the size
of the array.
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Fig. 1 Relationship between wave and wavelet and chirp and chirp-
let, in terms of time series and magnitude TF distributions. The phys-
ical affinity of the wavelet is first extended to TF affinity by adding
up and down translation and shear in TF space. These extra degrees
of freedom are achieved by multiplication of the wavelet by a chirp,
hence the term chirplet. (Modulation, which is a multiplication by a
pure tone, is just a special case of chirping.)

This work was first published” in Mann and Haykinl; the
term chirplet also appears later in the literature,® although
with a slightly different meaning.

The TF-affine chirplet consists of all the members of a
particular time-domain signal, which are affine transfor-
mations of each other when viewed in TF space. Philo-
sophically, there are two ways to think of this basis function:

1. Using the ‘‘piece-of-a-chirp’’ framework.

2. Thinking in terms of affine transformations in the TF
space, which consist of dilations and ‘‘chirpings’’ (in
both time and frequency). We note that translations
(modulations and delays) are just special cases of
chirpings (in time and frequency) where the chirp rate
is zero.

9Some of the work of Mann and Haykin' was presented briefly as part of
*“Radar Vision,””’ prior to publication.
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Fig. 2 The full gamut of TF perspectives. Actual TFDs of multiple-
primitive-prolate-chirplets, based on multiple discrete prolate sphe-
roidal sequence data windows.

2.2 Prolate Chirplet

We illustrate the chirplet concept by a simple example. We
use a function that is somewhat rectangular in TF space,
the discrete prolate spheroidal sequence (DPSS). These
functions are of special interest in the signal processing
communityg“1 and are commonly referred to as prolates
or Slepians. When we apply the 8 transformations to the
prolate, we obtain a specific class of chirplets, which we
refer to as prolate chirplets. Our tendency to favor the prolate
over other equally valid functions is mainly for illustrative
purposes; in choosing a mother chirplet, one must consider
each problem individually. We have, however, concentrated
on the prolate in developing an extension of Thomson’s
method of multiple windows.?3 The prolate chirplet has all
eight degrees of freedom (illustrated in Fig. 2):
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. Translation in time [This delay operator is
equivalent to Fourier transformation, followed by
multiplication by a complex exponential (wave), fol-
lowed by inverse Fourier transformation.]

2. Translation in frequency: multiplication by a
complex exponential

3. Dilation in time

4. Dilation in frequency (often inversely related
to time dilation)

p—

5. Shear in time: Fourier transformation, followed
by multiplication by a chirp, followed by inverse Fourier
transformation. Shear in time may be thought of as
a frequency-dependent delay and is also equivalent to
convolution with a chirp.

6. Shear in frequency: multiplication by a chirp
(linear frequency modulation).

~

Perspective projection in the time domain.
8. Perspective projection in the frequency domain.

2.3 Warblets

Initially, our choice of mother chirplets was based on various
optimization criteria, for example, maximum concentration
in parallelogram ‘‘boxes’’ (using multiple prolate chirplet
data windows), or maximum concentration near a center
point. All of these chirplets were monotonic-increasing or
monotonic-decreasing in frequency.

Recently, however, we have become interested in a set
of bases that matches phenomena whose time-frequency
evolution is periodic in nature.

We have identified a particular class of chirplet’ that has
a very profound significance, as well as practical applica-
tions in fields such as marine radar. To emphasize this
special class of chirplets, we have coined the word ‘‘war-
blet.”” Warblets are chirplets where the mother chirplet is a
single tone FM signal (like the sound produced by either a
police siren or the bird known as a warbler). The indexdi-
mensionality may be reduced to four by making use of the
fact that only translations and dilations produce meaningful
sinusoidal FM bases. This warblet paradigm is best under-
stood by pretending that the time-frequency plane is just an
ordinary oscilloscope, so that warblets appear as waves.

Expansions onto warblets have been found to perform
very well in marine radar applications for detecting small
iceberg fragments, which are hazardous to navigating ves-
sels. The reason warblets give such good performance is
based on the fact that they very closely match the underlying
physics of floating objects.

In practical applications, adaptivity is suited well to the
warblet; with only one basis function, we may describe
several seconds of radar data from a floating object. It has
been found that adaptivity is almost essential; nonadaptive
two-indexdimensional manifolds in warblet space do not
always provide meaningful results, because a problem exists
with phase alignment of the sinusoidal ‘‘squiggle’’ in the
TF space, which cannot be resolved by the analytic signal
(no counterpart exists to the analytic signal in the TF-
oscilloscope duality).
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3 LEM: An Expectation Maximization Paradigm
in Time—Frequency Space: The Adaptive
Chirplet

3.1 Introduction

We propose® a signal-dependent TF method, logon expec-
tation maximization (LEM), based on expectation maxim-
ization (EM).

We first generalize Gabor’s notion of logons!3 (a logon
is a “tile” in the tiling of the TF plane) to depict both the
Weyl-Heisenberg (e.g., constant bandwidth spectrogram)
as well as the physically affine (wavelet) transforms, each
as a specific case of this generalization. We then take ideas
from the well-known EM algorithm and apply them to the
TF distribution of some arbitrary signal. Thus, we fit the
TF distribution by a number of translates and dilates of some
scaling function in TF space. For each center of the scaling
function in this joint space there is a corresponding ‘‘wave-
let’’ in the physical (time) domain. Thus, we have abstracted
each adaptive ‘‘wavelet’’ by looking at it as a scaling func-
tion in the TF distribution space. Recall that we use the
term ‘‘wavelet’’ (in quotes) whenever we refer to our gen-
eralization of the physically affine wavelets. ‘‘“Wavelets”’
include time-domain functions corresponding to the mod-
ulated envelope bases of the scalogram.

The use of this EM paradigm leads to a novel variant of
the radial basis function (RBF) neural network classifier.
Rather than classifying on the basis of Mahalanobis distance
from the centers as in conventional RBF networks, we clas-
sify on the basis of the receptive field output in TF space.
Thus we treat each input time series not as a feature vector
that lies somewhere ‘‘in’’ a probability density function
(PDF), but rather by how it lies in the TF space. In other
words, LEM may be thought of as providing a new distance
metric for an RBF network. Classically, pattern recognition
involves a feature vector whose length is equal to the vec-
tordimension of the feature space. [Recall our distinction
between indexdimension (a vector is a one-indexdimensional
array) and vectordimension (a 512-sample time series may
be viewed to lie at a point in 512-dimensional vector space).]

In the case of a two-dimensional feature space, for ex-
ample, the input vectors should be of length two. In our
case, however, the input to the network becomes the time
series itself (a vector of, say, 512 samples), even though
the time series lies in a space of indexdimension two (time
and frequency). The RBF network then becomes an inter-
polator in this space rather than in the usual vector space.

3.2 Similarities Between Time-Frequency
Distributions and Probability Density Functions

We know that a probability function of time and frequency
is disallowed,16 but nevertheless, we consider ways to ap-
proximate PDF behavior in a TF distribution, leading even-
tually to treatment of the time-frequency distribution (TFD)
as a distribution to be itself approximated by a number of
centers of some self-similar interpolation function. The par-
allel between TFDs and PDFs is as follows:

°It has recently been observed that our LEM paradigm is, in some ways,
similar to the earlier work of Jones et al.,'* although our approach is quite
different.
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e Complex-valued functions whose energy has proba-
bility-like characteristics are often useful:

1. Time-frequency decompositions, like frequency
spectra, may be complex, but often we wish to
establish measures of concentration or position of
their power (or magnitude) spectral components.

2. In the physics literature ‘‘wavefunctions,”” which
are complex, are chosen so only their squared mag-
nitudes are meaningful; their squared magnitudes
are PDFs. We are free to choose a number of
possible wavefunctions to represent one specific
energy function. The well-known Weyl corre-
spondence leads to one choice from among a large
family of possible wavefunctions. The energy func-
tion is what we measure or observe, while the
wavefunction is chosen to fulfill some purpose in
terms of the mathematical theory.

Thus, TFDs and PDFs may both have an associated complex-
valued function whose magnitude or squared magnitude ful-
fills the intended criteria. Thereby an expansion of a signal,
which has some arbitrary TFD, onto a basis of adaptive
Gabor logons is analogous to expansion of some unknown
PDF by an adaptive sum of Gaussians (as in the classic EM
algorithm).

Criteria desirable (not necessarily possible) for a TFD or
PDF:

e Marginals obtainable by integration (e.g., to get the
spectrum, simply integrate the TFD with respect to
time).

e The area under the distribution should be constant.
Probability density functions are usually normalized to
a unit area. Time-frequency distributions are usually
normalized [provided the upper and lower frame bounds
are equal (tight frame)], so the integrated squared mag-
nitude is equal to the energy in the original time-domain
signal, thus achieving isometry. When we deal with
energy distributions, we will normalize them to have
a unit area or L! norm (in other words, the underlying
functions will be normalized to a unit L? norm).

o In TF estimation, as in spectral estimation, we cannot
measure the spectrum exactly [for reasons such as the
minimum time-bandwidth product (equivalent to Hei-
senberg’s uncertainty relation in physics)], but the more
data we have, the more certain we are of the spectrum.
Similarly, the more data we have, the better estimate
we can get of the cojoint TF density function. A similar
result holds with PDFs; the more data we have, the
better estimate we have of the statistics.

Thus an approximate parallel between TFDs and PDFs
may be constructed, both in terms of the underlying problem
space and in terms of the desirable properties of each.

Gabor functions, because of their Gaussian envelopes,
have elliptically shaped equiprobability contours in TF space,
as shown in Fig. 3. Imagine a distribution close to the shape
of a bivariate Gaussian, rising up out of the page, with a
curve drawn where its height is 1 6. This curve isdrawn as an
ellipse through the scatter points.

Scatter corresponding to logons of short duration

Frequency

Time

Fig. 3 Scatter and equiprobability contours for four examples of tone
packets of relatively short duration and broad bandwidth.

3.3 Measures of Concentration

In any TF basis, we generally wish to attain compact support
simultaneously in both the physical domain (e.g., time) and
the Fourier domain. These two constraints are, however,
conflicting requirements. This constraint is often referred to
in the literature as the uncertainty principle.

We wish to derive a measure of concentration in TF
space. There are a number of such measures in the literature.
One such example (Baraniuk and Jones!” and Vakman'®)
considers the normalized volume of a TF distribution to be
a quantity that we wish to minimize. In other words, Bar-
aniuk and Jones determine the maximum of the TF distri-
bution, then normalize the whole distribution so that the
maximum is one. They then compute the volume.

We take a slightly different approach, starting with
Gabor’s'® definition of the effective duration of a pulse:

2

el @]

where my denotes the k’th moment of the energy or power
of the signal.

In terms of the Dirac notation, the energy moments of
some arbitrary signal {s are given by

m= <Y|Fp> . )
When k=0, we may write Eq. (2) as
mo= <ypy> )

which is the energy in the signal.

The triple inner product, <alb,|c>, is defined as [© «
dta*(t)b,(t)c(t). Note that the center variable, b,, will al-
ways be real, and that the first variable a is the one that we
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conjugate. (Note also our use of the vertical bar as opposed
to the comma, often used in this notation.)

The effective duration in frequency (bandwidth) is de-
fined in the same manner. In the electrical engineering field,
the bandwidth of a signal is generally given in terms of the
width at the half power points. This definition has very poor
mathematical properties, however. The rms deviation from
the central epoch, as given in Eq. (3), is much more mean-
ingful. What this measure does is fit a Gaussian distribution
to the energy in the signal. The moments given in Eq. (4)
are akin to the mean and variance of a Gaussian distribution.

The mp in Eq. (3) simply makes the signal have unit L,
norm (unit energy) before computing the variance.

Note that, for example, a rectangular pulse of duration
T has an effective duration of (/6)V2T,or about 0.7236T.

We extend this support measure to the TF plane by simply
fitting whatever TFD we have by a bivariate Gaussian dis-
tribution.

The equation for an ellipse simply represents a contour
of a bivariate Gaussian distribution. The bivariate Gaussian,
in terms of time and frequency, is given by:

TR(t.f) = eXp[—([t—tc,f—fc]S_l[}:}z])] . ®

where S is given by

2
_ 0'[0
S—[O Ufz:l .

We wish to generalize this notion to include chirping Gabor
functions, so we redefine S as follows:

2 2
s=|% . %)
Oft Off

We define the four quantities, o, to be positive and real;
for the time being, we do not consider negative or complex
bandwidths or temporal extents. Since o, are all positive,
S is always real. When S is diagonal, the distribution is
aligned along the Cartesian axes, ¢ and f. With off-diagonal
elements, however, some tilt or shear is present. We may
diagonalize the matrix of variances S, with an eigendecom-
position as follows'’:

S=VAV! 8)

where V is a unitary matrix, and A is a diagonal matrix,
given by

a0
oIy 0

Because V is unitary, it is equal to V', so the eigendecom-
position becomes

s=vav' . (10)

Since S is real, V is also real, and the T operator simply
performs a row-column transposition. (Our use of the ¥
notation, rather than simply 7, is for consistency with re-
spect to complex signal bandwidths, which are not addressed
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in this paper. Assume V is always real, and thus t is equival-
ent to T.)

The eigenvalues indicate the major and minor axes of
the elliptical contours of the distribution. In other words,
premultiplying by V and postmultiplying by V' essentially
‘‘dechirp’’ the signal in terms of the TF-affine space. For
a chirping Gaussian signal, these eigenvalues simply indi-
cate the physical extent along oblique directions. Thus, their
product still provides the same value. In other words, for
Gaussian enveloped chirps, no matter what the chirp rate,
their concentration is still one-half. Thus we define an inverse-
concentration (spread) measure equal to the product of the
‘‘oblique bandwidth’’ (bandwidth after dechirping in time)
and ‘‘oblique duration’’ (duration after dechirping in fre-
quency). This measure of spread is proportional to the area
of the ‘‘one sigma equiprobability contour.”” We may apply
this concentration to any distribution such as a rectangular
block. The distribution need not be Gaussian, we are simply
modeling it as Gaussian; the modeling is an artifice. We
simply want a method to measure the concentration without
‘‘penalizing’’ a distribution for being oblique. Thus, for any
distribution, the matrix S may be computed, and an eigen-
decomposition performed, leading to a useful measure of
concentration.

This concentration measure is simply the product of the
two eigenvalues N1\, which is just the determinant of the
matrix S. If we want the oblique bandwidth and oblique
duration to be positive, we must impose the following con-
straint:

A1>0and A,>0 . a1

In other words, we must impose the constraint that S be
positive definite.

Our concentration measure also provides a measure of
the “‘chirpiness’’ of the signal, but does not explicitly pro-
vide the shears in each of the two directions. Another method
has been derived for independently providing a measure of
the shear in each of the two directions.

If S is not diagonal (s, and sy, are nonzero) then the
effective duration oy and effective bandwidth o have a
product greater than one-half. This increase is due to the
slant, or chirp. Thus, regardless of the slant of a distribution,
we may determine its concentration in a particularly mean-
ingful way by fitting a bivariate Gaussian to it and computing
the determinant.

Our concentration measure has a number of nice prop-
erties. For example, if there are two peaks in the distribu-
tion, as they move farther apart, they contribute more se-
verely to the degradation in concentration as reported by
our measure. Thus a distribution cannot ‘get away with”’
drifting away from the desired analysis point without af-
fecting the cost function. Thus, when performing a TF anal-
ysis about a particular point in TF space, contributions far-
ther from that point are ‘‘penalized’’ more severely than
those that are close. Area-based measures do not possess
this desirable property. Similarly, a ‘brick-wall’’ measure,
such as that used in Thomson’s method, does not address
this issue, but rather it simply treats all contributions equally
within a specified rectangular block in TF space. Further-
more, we may either estimate the mean epoch from the TF
distribution or specify it. When we specify w, and s, we
obtain a measure of concentration about that specific point.
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When we obtain W, and py from the distribution, we
obtain a measure of concentration that is independent of any
of our TF-affine operators. Thus, we do not penalize a
distribution for being slender, nor do we penalize it for being
slanted (chirped).

3.4 The Adaptive ‘“Wavelet”’

We use a modified version of the well-known expectation
maximization (EM) algorithm. Expectation maximization is
generally used to approximate a PDF. It essentially fits a
mixture distribution by a sum of Gaussian (or other) random
processes.

In our case we are not interested in fitting a PDF, but
rather we would like to approximate a TFD. Initially, sup-
pose we wish to use only one center to fit the TF distribution
of an arbitrary time series s. A simple selection of the center
location follows:

< s|t|s >

c ) 12
s> (12)
_ <S|fIs>

fe= <sls> 3)

where ¢, and f, are the coordinates of the center in time and
frequency and S is the Fourier transform of s, given by
S(H= <exp(+j2mft)|s(t)>.

Note that by Plancherel’s theorem (conservation of en-
ergy in the transform domain), the denommators in Egs. (12)
and (13) are both equal to the L? norm (energy) of the
signal g.

When more than one center is used to fit the distribution,
we propose a varlant of the EM algorithm. Chapter 6 in
Duda and Hart® is a good standard reference for this al-
gorithm, although it does not explicitly refer to the algorithm
by the commonly used term EM. Another standard reference
is Dempster et al.! Qur variant of EM follows directly from
Hinton,?? where he outlines three steps to fitting a distri-
bution by a sum of Guassians:

e For each data point d, compute the probability density
p(d|i) for each unit i, using the current mean and var-
iance for that unit.

e Normalize these probability densities to get the prob-
ability that each Gaussian gives rise to each data point
(the‘‘blame’’ assigned to that Gaussian):

p(dli)

de—iy=L20
PUD =3 ol

(14)

e Using these normalized probabilities as weighting fac-
tors, compute a new mean and variance for each Gaus-
sian (i.e., find the maximum likelihood fit to the weighted
data points).

Also note that no learning rate is required (it is quite unlike
steepest descent).

In our case, since we do not have discrete points, we
use a batch process on the whole distribution. We also do
not limit ourselves to Gaussian distributions. There are some
problems though with functions such as Slepians, which
have sharp transitions in time and frequency support. The

fae—

Gaussian, because it is smooth in both time and frequency,
seems to work best. It also has some other nice properties.

Consider a simple two-center example: let the centers be
designated by Gaussian functions c; and c; and their shifted
Fourier transforms by C; and C,. These centers may be
thought of as functions of time, of frequency, or as elliptical
“‘blobs’’ in TF space. Suppose they are discrete and consist
of 512 samples.

We update the location of center 1, iteratively, accor-
ding to:

S by (1)s*(1)s(t)
h<Ssn (15)
by (1) s*(1) (1)

where b;(t) is the ‘‘blame’’ (or credit) associated with c;.
This blame (relative likelihood that each sample was pro-
duced by Gaussian center c) is given by:

cHDews)
= 1
D= () + (e (16)
and
512
F=1fB1(f)S*(F)S(f)
fl <« 512 , (17)

F=1B1(f)S*(f)S(f)

where B, is the ‘‘blame-spectrum’’ of C1, given by:

Ci(f)Ci(f)
Bl(f)—Cik(f)cl(f)+C§(f)C2(f) 1

The location, in time, of center 2 is updated in the same
manner:

<s|byt|s >

<s|by|s> (19)

5]

where, for simplicity, we have dropped the time dependence
in the variables s and c¢. This temporal adaptation stage is
shown, hypothetically, in Figs. 4 (TF-domain) and 5 (time
domain).
The spectral adaptation stage for center 2 is given by:

< S|Byf| s> 0
<S|By|S> "’ (20)
where we have again simplified by dropping the dependency
(this time the frequency dependency) of the variables. Also
recall that uppercase characters denote the Fourier trans-
forms of the corresponding lowercase characters. Figure 6
(TF domain) shows the spectral adaptation stage for a hy-
pothetical 2 center example.

In general, we use the following iterative update rule for
the coordinates of center k:

<s|bxt|s>
<s|bx|s>

<S|ka|S>> b

(e, fi) = ( <S|Bi|S>

The above is a maximum-likelihood estimate of the mean
for each basis function c, weighted by the signal s. Sim-
ilarly, we may find the maximum-likelihood estimate of the
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Fig. 4 Temporal adaptation portion of LEM as viewed in the TF
domain: The energy distribution of the wavelets iteratively adapts to
the energy distribution of the signal (temporal locations of maximum
energy). In this simple hypothetical example, we are trying to fit a
signal, which is a sum of two Slepian functions, by two Gabor wave-
lets. Note that zero frequency is in the center, since the wavelets
are analytic (complex, and lying within the Hardy space). (a) Initially
and (b) eventually the two centers are pulled onto temporal maxima.

variance for each cx by:

N-1 [Etzka*S _ (Etbk3*3>2]

N Zbks*s Zbks*s

where N =512 samples.

ol= (22)

Figures 7 and 8 show two different examples of LEM.
Figure 7 was chosen to emphasize the process from the
temporal adaptation perspective [as in Egs. (15) and (19)],
while Fig. 8 was chosen to highlight the spectral adaptation
process [Eqgs. (16) and (20)].

In our simulations, ¢; and ¢, were initialized to analytic
Gabor functions, with arbitrarily chosen center frequencies
and arbitrary center temporal epochs.

Figure 4 is a somewhat idealized illustration, showing
how the centers migrate along the time axis only, and Fig. 5
shows the corresponding centers plotted in the time domain,
initially, and after a few iterations.

Likewise, Fig. 6 is a hypothetical illustration of how the
centers move along the frequency axis only, to match the
distribution in that direction.

By alternately applying Egs. (15), (17), (19), and (20)
(cycling through the four equations), centers move to local
maxima in an arbitrary TF distribution, moving around in
the 2-D space. If the signal s has a distribution with two
distinct peaks, then the algorithm works quite well. If, how-
ever, there are two peaks very close together, then the con-
vergence is very slow. There must also be some reasonable
amount of disjointness in the starting values of the centers
in both time and frequency.
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Figure 7 shows an example illustrating how the time and
frequency update rules are applied together. The four sub-
plots on the left are the real parts of the time-domain signals
corresponding to each of the four TFD contour plots on the
right. The upper subplot pair is of the signal, two rf pulses
(portions of sinusoids). The next subplot pair shows the
initial starting guess of the centers (two Gabor functions).
We can see that the centers move toward the peaks in the
distribution, while the time-domain signals look more and
more like the desired function leading to as good a fit as
can be expected using Gabor functions to approximate rf
pulses.

In Fig. 7 we saw the LEM process in both TF space and
in the time domain. We may also observe LEM in the
frequency domain. In Fig. 8 we see how the marginals, in
frequency, adapt.

If the initial values of the centers are chosen poorly, the
convergence will be extremely slow. For example, if the
centers ever lose their disjointness in either domain (time
or frequency), they will become ‘‘locked’’ together in that
domain. Figure 9 illustrates what happens when the centers
become ‘‘frequency-locked.”” In Fig. 7, if we had chosen
the starting values so that the left center was lower in fre-
quency than the right one, the centers would have become
““‘locked’’ in at least one of the two domains. In other words,
LEM1 will not permit the centers to pass over one another.
Should our initial guess be such that they need to cross over,
then they will, at some time during that crossover, lose
disjointness in either time or frequency; thus LEM1 will
often fail.

We therefore propose another algorithm, LEM2, which
operates in the two dimensions simultaneously, rather than
alternately. The coordinates for each center are updated
from the first moments of the signal-weighted ‘‘blame’’
function. The moments are computed in the 2-D TF space:

. <BoS|1> <t|S >
K <sBYS > ’

(23)
_ <BioS|f> <1|S>
K <siBiS >

where boldface sans serif uppercase characters indicate TF
distributions, 1 is the vector of unity (in the discrete case)
or a constant value (in the continuous case), (|1> <t|,
|f> < 1|) is the outer product space of time and frequency,
and © indicates the Hadamard product [also known as the
Schur product, or simply element-by-element (component-
wise) multiplication, as given by the symbols *“.*”’ in Mat-
lab.] if the functions are discrete, and just function multi-
plication if they are continuous.

Figure 10 shows how the use of LEM2 breaks locked
centers. Disjointness between centers is now only required
in one domain.

Another subtle advantage of LEM2 over LEM1 is that
the compactness in TF space may be estimated. LEM1 limits
us to area-preserving-TF-affine transformations, while LEM2
allows us the possibility of a change in the mathematical
description of the basis, particularly useful when, for ex-
ample, dealing with a mother chirplet, which is itself a
family of (DPSSs).
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Fig. 5 Temporal adaptation portion of LEM as viewed in physical space (the time domain): In the time
domain, the wavelets undergo translation to match locations of maximum energy within their band-
widths, which is equivalent to the way the distributions are moving in Fig. 4.
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(a)

Fig. 6 Frequency adaptation portion of LEM as viewed in the time-
frequency domain: Even though the signal contains two components
on top of one another in time, they can be resolved by the adaptive
wavelets since they are disjoint in Fourier support (separated in
frequency). (a) Initially and (b) eventually the two centers are pulled
onto frequency maxima.

Time

The drawback of LEM2 is that it requires a number of
TF evaluations, but this drawback can be overcome by using
the following strategy:

o Select initial guess: position the centers at their starting
points.

e Apply LEM2 once with very coarse TF resolution.

o If necessary apply LEM2 again with finer resolution
in TF space . . . (apply in coarse to fine manner if

necessary).
e Apply LEM1 at full resolution.

Typically a single coarse run of LEM?2 will be sufficient,
although a coarse to fine strategy will also help to refine the
initial estimate. For example, a 512-point time series may
be started with LEM2 at 32 X 32 point resolution, followed
by a few iterations of LEM1.

We may also wish to adapt the variances of the distri-
butions. Unlike the general probability distributions, we
often desire to maintain a constant area logon. Thus, rather
than changing the diameter of the circle, as is done in ap-
proximating PDFs??, we allow the aspect ratio to vary. Such
a hypothetical example is illustrated in Fig. 11, with the
corresponding time-domain representation in Fig. 12. These
functions are neither affine wavelets (wavelets of constant
shape), nor are they modulated versions of a single function
as in the spectrogram basis. They are free to vary in both
dilation, temporal center, and modulation.

In a similar manner, the chirpiness of each center may
be adapted using LEM2.
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Fig. 7 Using LEM to approximate two rf pulses with two Gabor
functions. Our adaptive Gabor bases are complex; we have shown
only the real parts for simplicity. Here phase is treated as a nuisance
parameter and we are simply interested in moving the peaks of the
bases to the peaks of energy in each domain (time and frequency).
The dotted line indicates the magnitude of the distributions in the
time-domain plots.

3.5 RBF-TF Neural Network

Our results so far enable us to “‘learn’’ a TF distribution.
The signal s need not be fixed, but rather, the system may
be presented with a series of signals s1, s2,..., s7. It will
then ‘‘learn’’ the average trends. For example, LEM may
be presented with radar data, which have a slowly varying
TF distribution. Some of the centers will track the clutter
component, and some will track the objects of interest.
Computing the inner product of each of the centers with the
current radar signal will then provide a feature vector that
may be passed on to a classifier. We propose the use of a
neural network similar to the RBF neural network. We sug-
gest simply modifying the input layer to become these inner
products and leaving the other layers as they normally are.
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Input to LEM (“‘Training’’ Data)
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Fig. 8 Example of LEM shown in both the frequency domain (solid
line indicates magnitude spectrum) and the TF domain. The scale
parameter and initial training data were chosen to make the distri-
bution interesting in the frequency domain. The direction of the fre-
quency plots is sideways so they line up with the frequency axis of
the TF space.

Relationship between LEM, the chirplet transform and
the RBF neural network. In this section, we make ref-
erence to LEM as a new distance metric for a RBF network.
We will now briefly elaborate on this connection. Generally
the RBF network consists of a radially symmetric nonlinear
layer, followed by a linear layer. (Here we refer to symmetry
from the perspective of the Mahalanobis metric; clearly an
ellipse is not radially symmetric in the Euclidean metric.)

The nonlinear layer may be trained by, for example, the
EM algorithm, while the linear layer may be trained sep-
arately.

Figure 13 shows the RBF network architecture. Here we
consider a two-vectordimensional input space and an arbi-
trary number of outputs. The outputs of the network y; are
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Fig. 9 We illustrate frequency-locking, a failure mode of LEM, by
deliberately selecting starting values not disjoint in Fourier space.
Here we have two Gabor wavelets trying to fit two Slepian functions.
The fit is successful only in the time domain, while in the frequency
domain, the logons become stuck. (LEM will also similarly fail in the
time domain if the centers ever lose their disjointness in time.)

given by
y=W;, 24)

where y represents the output vector, z represents the hidden
(middle) layer, and W represents the matrix of weights
(connection strengths) in the linear portion of the network.
The linear portion of the network may be solved very easily,
using least-mean-squares (LMS), or linear-least-squares
(pseudo-inverse) as follows:

w#=w" wwhH-1 | (25)

where the symbol T denotes the conjugate transpose.
In Fig. 14 we provide an alternate visualization of the
first layer where we draw in the hypothetical equiprobability

Input to LEM (*‘Training’’ Data)
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Time Time
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. 05 i
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Fig. 10 LEM2 should be used for the first one or two iterations to
prevent loss of disjointness. Here we show how it can specifically
break lockup, allowing the centers to pass over each other in one
domain if necessary.

B
ap

A A I@
Time ——B Time ——&
(a) (b)

Fig. 11 Here we have a fully adaptive wavelet, which includes both
the wavelet and sliding window Fourier bases as special cases.
Hence, we have a mixed Weyl-Heisenburg and affine space, where
translation, dilation, and modulation are free to vary independently
to match the input distribution. (a) Initially, then (b) after a few iter-
ations, the centers translate and dilate (while preserving constant
area) to match the input distribution.
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Fig. 12 Simultaneous time and frequency adaptations of LEM as seen in the time domain. The fully
adaptive nature of our wavelet is explicitly visible here. Again, the time-domain description of the signal
shows how the wavelet centers are translating in time, while at the same time dilating to match the
bandwidth and temporal extent of the signal as well as modulating (acquiring more or less squiggles
or waves) to match the center frequency independent of the extent of dilation.

RADIALLY SYMMETRIC

W
NONLINEAR NETWORK LINEAR NETWORK

Y1
X[1
[1] ‘.
X|2
(2] .
INPUT UNITS OUTPUT UNITS

Fig. 13 The radial basis functions neural network in its usual form.
The first layer is a radially symmetric nonlinear network. It is often
realized by computing a Mahalanobis distance between the incoming
vector y and each of the centers. This network layer may be trained
independently of the linear network that follows: the linear network
may be trained using a pseudo-inverse (least-squares).

contours of the centers (in this case, seven). We show el-
liptical contours to represent a Gaussian nonlinearity in the
nonlinear portion of the network.

If we follow our LEM algorithm by a linear network,
we obtain a similar structure, which we show in Fig. 15.

3.6 LEM in frequency-frequency (“‘bowtie”) space

The frequency-frequency space’ is a particular slice through
the chirplet transform space. It is equivalent to a Hough
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X[2]

X[1] ———=

Fig. 14 Alternative visualization of the radial basis function neural
network. The radially symmetric nonlinear layer is represented in the
vector space. The connections are shown from seven hypothetical
centers. Here we have Gaussian centers, but we may note that any
arbitrary function could be used.

(radon) transform of the Wigner distribution. Points in this
bowtie chirplet transform (BCT) space correspond to straight
lines in time-frequency space.

Bowtie chirplet transform space provides an alternative,
sometimes more insightful manner of viewing the LEM
process. In particular, we view LEM from BCT space, while
it fits a Doppler radar return of a scene with three objects
present. The nonadaptive BCT is shown in Fig. 16. Using
the adaptive BCT, we are able to adapt the three bowties
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Fig. 15 RBF-TF: The proposed variant of the RBF neural network.
The radially symmetric nonlinear layer is no longer a vector space,
but rather a time-frequency distribution. The connections are shown
from seven hypothetical centers. These centers are now any affine
scaling function in TF space. For example, we may use a Gabor
function (Gaussian enveloped sinusoid). We obtain the slant by using
a Gaussian enveloped chirp. In this case, we have four degrees of
freedom; tc, fc, aspect ratio (slenderness), and rotation angle.

Bowtie-Chirplet Transform with three objects present

e
N
T

L

Ending Frequency

— i

0.4 02 0 02 04
Beginning Frequency

Fig. 16 BCT of radar return from three objects undergoing uniform
acceleration.

(see Fig. 17). They move into the three positions corre-
sponding to each of the three acceleration values.

4 Conclusion

We have extended the method of TF perspectives (the chirp-
let transform), proposed by Mann and Haykin,!:3 into an
adaptive domain.

While the nonadaptive chirplet has been successfully
applied to many problems, such as Doppler processing,’
“‘radar vision,””’ machine vision and camera parameter es-
timation,* and image processing, adaptivity provides two

Adapted Chirplets in Bowtie-Chirplet Space

Ending Frequency

02} R i I H 4
-0.4 0.2 0 0.2 0.4
Beginning Frequency

Fig. 17 Three LEM centers in the bowtie space, which have adapted
to fit the distribution of a radar return from a scene with three in-
dependently moving objects.

distinct advantages over the nonadaptive chirplet by pro-
viding:

e a compact description of the signal
e a possible means of classification.

Furthermore, adaptivity enables us to manage the large
number of free parameters by adapting some of them, and
exploring specific manifolds within the chirplet space.
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